Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.944
1.
BMJ Open ; 14(5): e081317, 2024 May 01.
Article En | MEDLINE | ID: mdl-38692728

INTRODUCTION: Gait and mobility impairment are pivotal signs of parkinsonism, and they are particularly severe in atypical parkinsonian disorders including multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). A pilot study demonstrated a significant improvement of gait in patients with MSA of parkinsonian type (MSA-P) after physiotherapy and matching home-based exercise, as reflected by sensor-based gait parameters. In this study, we aim to investigate whether a gait-focused physiotherapy (GPT) and matching home-based exercise lead to a greater improvement of gait performance compared with a standard physiotherapy/home-based exercise programme (standard physiotherapy, SPT). METHODS AND ANALYSIS: This protocol was deployed to evaluate the effects of a GPT versus an active control undergoing SPT and matching home-based exercise with regard to laboratory gait parameters, physical activity measures and clinical scales in patients with Parkinson's disease (PD), MSA-P and PSP. The primary outcomes of the trial are sensor-based laboratory gait parameters, while the secondary outcome measures comprise real-world derived parameters, clinical rating scales and patient questionnaires. We aim to enrol 48 patients per disease group into this double-blind, randomised-controlled trial. The study starts with a 1 week wearable sensor-based monitoring of physical activity. After randomisation, patients undergo a 2 week daily inpatient physiotherapy, followed by 5 week matching unsupervised home-based training. A 1 week physical activity monitoring is repeated during the last week of intervention. ETHICS AND DISSEMINATION: This study, registered as 'Mobility in Atypical Parkinsonism: a Trial of Physiotherapy (Mobility_APP)' at clinicaltrials.gov (NCT04608604), received ethics approval by local committees of the involved centres. The patient's recruitment takes place at the Movement Disorders Units of Innsbruck (Austria), Erlangen (Germany), Lausanne (Switzerland), Luxembourg (Luxembourg) and Bolzano (Italy). The data resulting from this project will be submitted to peer-reviewed journals, presented at international congresses and made publicly available at the end of the trial. TRIAL REGISTRATION NUMBER: NCT04608604.


Exercise Therapy , Parkinsonian Disorders , Physical Therapy Modalities , Humans , Exercise Therapy/methods , Parkinsonian Disorders/rehabilitation , Parkinsonian Disorders/therapy , Double-Blind Method , Randomized Controlled Trials as Topic , Gait , Parkinson Disease/rehabilitation , Parkinson Disease/therapy , Multiple System Atrophy/rehabilitation , Multiple System Atrophy/therapy , Supranuclear Palsy, Progressive/therapy , Supranuclear Palsy, Progressive/rehabilitation , Home Care Services , Aged , Male , Female , Gait Disorders, Neurologic/rehabilitation , Gait Disorders, Neurologic/etiology
2.
Neuromolecular Med ; 26(1): 19, 2024 May 04.
Article En | MEDLINE | ID: mdl-38703217

Parkinson's disease (PD) is a neurodegenerative disorder associated with mitochondrial dysfunctions and oxidative stress. However, to date, therapeutics targeting these pathological events have not managed to translate from bench to bedside for clinical use. One of the major reasons for the lack of translational success has been the use of classical model systems that do not replicate the disease pathology and progression with the same degree of robustness. Therefore, we employed a more physiologically relevant model involving alpha-synuclein-preformed fibrils (PFF) exposure to SH-SY5Y cells and Sprague Dawley rats. We further explored the possible involvement of transient receptor potential canonical 5 (TRPC5) channels in PD-like pathology induced by these alpha-synuclein-preformed fibrils with emphasis on amelioration of oxidative stress and mitochondrial health. We observed that alpha-synuclein PFF exposure produced neurobehavioural deficits that were positively ameliorated after treatment with the TRPC5 inhibitor clemizole. Furthermore, Clemizole also reduced p-alpha-synuclein and diminished oxidative stress levels which resulted in overall improvements in mitochondrial biogenesis and functions. Finally, the results of the pharmacological modulation were further validated using siRNA-mediated knockdown of TRPC5 channels, which also decreased p-alpha-synuclein expression. Together, the results of this study could be superimposed in the future for exploring the beneficial effects of TRPC5 channel modulation for other neurodegenerative disorders and synucleopathies.


Mitochondria , Oxidative Stress , Rats, Sprague-Dawley , TRPC Cation Channels , alpha-Synuclein , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Animals , Rats , Oxidative Stress/drug effects , Humans , TRPC Cation Channels/genetics , TRPC Cation Channels/antagonists & inhibitors , Mitochondria/drug effects , Mitochondria/metabolism , Cell Line, Tumor , Male , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/chemically induced , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , RNA, Small Interfering/therapeutic use , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/drug therapy
3.
Neuropharmacology ; 252: 109946, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38599494

The spontaneous firing activity of nigral dopaminergic neurons is associated with some important roles including modulation of dopamine release, expression of tyrosine hydroxylase (TH), as well as neuronal survival. The decreased neuroactivity of nigral dopaminergic neurons has been revealed in Parkinson's disease. Central glucagon-like peptide-1 (GLP-1) functions as a neurotransmitter or neuromodulator to exert multiple brain functions. Although morphological studies revealed the expression of GLP-1 receptors (GLP-1Rs) in the substantia nigra pars compacta, the possible modulation of GLP-1 on spontaneous firing activity of nigral dopaminergic neurons is unknown. The present extracellular in vivo single unit recordings revealed that GLP-1R agonist exendin-4 significantly increased the spontaneous firing rate and decreased the firing regularity of partial nigral dopaminergic neurons of adult male C57BL/6 mice. Blockade of GLP-1Rs by exendin (9-39) decreased the firing rate of nigral dopaminergic neurons suggesting the involvement of endogenous GLP-1 in the modulation of firing activity. Furthermore, the PKA and the transient receptor potential canonical (TRPC) 4/5 channels are involved in activation of GLP-1Rs-induced excitatory effects of nigral dopaminergic neurons. Under parkinsonian state, both the exogenous and endogenous GLP-1 could still induce excitatory effects on the surviving nigral dopaminergic neurons. As the mild excitatory stimuli exert neuroprotective effects on nigral dopaminergic neurons, the present GLP-1-induced excitatory effects may partially contribute to its antiparkinsonian effects.


Action Potentials , Dopaminergic Neurons , Exenatide , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Mice, Inbred C57BL , Substantia Nigra , Animals , Male , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/pharmacology , Exenatide/pharmacology , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Action Potentials/drug effects , Action Potentials/physiology , Mice , Venoms/pharmacology , Peptides/pharmacology , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/physiopathology , Peptide Fragments/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism
4.
Behav Pharmacol ; 35(4): 185-192, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38563661

LY-404,039 is an orthosteric agonist at metabotropic glutamate 2 and 3 (mGlu 2/3 ) receptors, with a possible additional agonist effect at dopamine D 2 receptors. LY-404,039 and its pro-drug, LY-2140023, have previously been tested in clinical trials for psychiatric indications and could therefore be repurposed if they were shown to be efficacious in other conditions. We have recently demonstrated that the mGlu 2/3 orthosteric agonist LY-354,740 alleviated L-3,4-dihydroxyphenylalanine (L-DOPA)-induced abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA)-lesioned rat without hampering the anti-parkinsonian action of L-DOPA. Here, we seek to take advantage of a possible additional D 2 -agonist effect of LY-404,039 and see if an anti-parkinsonian benefit might be achieved in addition to the antidyskinetic effect of mGlu 2/3 activation. To this end, we have administered LY-404,039 (vehicle, 0.1, 1 and 10 mg/kg) to 6-OHDA-lesioned rats, after which the severity of axial, limbs and oro-lingual (ALO) AIMs was assessed. The addition of LY-404,039 10 mg/kg to L-DOPA resulted in a significant reduction of ALO AIMs over 60-100 min (54%, P  < 0.05). In addition, LY-404,039 significantly enhanced the antiparkinsonian effect of L-DOPA, assessed through the cylinder test (76%, P  < 0.01). These results provide further evidence that mGlu 2/3 orthosteric stimulation may alleviate dyskinesia in PD and, in the specific case of LY-404,039, a possible D 2 -agonist effect might also make it attractive to address motor fluctuations. Because LY-404,039 and its pro-drug have been administered to humans, they could possibly be advanced to Phase IIa trials rapidly for the treatment of motor complications in PD.


Dyskinesia, Drug-Induced , Levodopa , Oxidopamine , Parkinsonian Disorders , Receptors, Metabotropic Glutamate , Animals , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/metabolism , Rats , Parkinsonian Disorders/drug therapy , Male , Dyskinesia, Drug-Induced/drug therapy , Oxidopamine/pharmacology , Levodopa/pharmacology , Antiparkinson Agents/pharmacology , Amino Acids/pharmacology , Dose-Response Relationship, Drug , Disease Models, Animal , Rats, Sprague-Dawley , Bridged Bicyclo Compounds/pharmacology , Excitatory Amino Acid Agonists/pharmacology , Rats, Wistar
5.
J Mol Model ; 30(5): 133, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38625397

CONTEXT: Parkinson's disease is a neurodegenerative condition characterized by the degeneration of dopaminergic neurons, resulting in motor disabilities such as rigidity, bradykinesia, postural instability, and resting tremors. While the exact cause of Parkinson's remains uncertain, both familial and sporadic forms are often associated with the G2019S mutation found in the kinase domain of LRRK2. Roco4 is an analogue of LRRK2 protein in Dictyostelium discoideum which is an established model organism to investigate LRRK2 inhibitors. In this study, the potential treatment of Parkinson's was explored by inhibiting the activity of the mutated LRRK2 protein using Roco4 as the base protein structure. Mongolicain-A and Bacoside-A exhibited significant selectivity towards the G2019S mutation, displaying a binding affinity of - 12.3 Kcal/mol and - 11.4 Kcal/mol respectively. Mongolicain-A demonstrated increased specificity towards Roco4, while Bacoside-A demonstrated significant binding affinity to all 34 kinases proteins alike. The Molecular Dynamics Studies (MDS) results strongly suggests that Mongolicain-A is a significant inhibitor of Roco4 kinase. ADMET and drugability analysis also suggests that among the two best ligands, Mongolicain-A demonstrates significant physicochemical properties to be suitable for best drug like molecule. Based on the in-silico molecular docking, molecular dynamic simulation, ADMET and drugability analyses, it is strongly suggested that, Mongolicain-A could be a potential candidate for treatment and management of Parkinson's disease via inhibition of LRRK2 protein. Further in-vitro and in-vivo investigations are in demand to validate these findings. METHODS: To identify potential inhibitors, 3069 phytochemicals were screened using molecular docking via AutoDock Vina. Molecular Dynamics Simulation was carried out using GROMACS 2022.2 for a duration of 100ns per complex to study the stability and inhibition potential of the protein ligand complexes. ADMET analysis was carriedout using Molinspiration and preADMET web tool.


Antineoplastic Agents , Dictyostelium , Parkinson Disease , Parkinsonian Disorders , Humans , Parkinson Disease/drug therapy , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Molecular Dynamics Simulation , Molecular Docking Simulation
6.
J Neurosci Res ; 102(4): e25328, 2024 Apr.
Article En | MEDLINE | ID: mdl-38651310

Although manifesting contrasting phenotypes, Parkinson's disease and dystonia, the two most common movement disorders, can originate from similar pathophysiology. Previously, we demonstrated that lesioning (silencing) of a discrete dorsal region in the globus pallidus (rodent equivalent to globus pallidus externa) in rats and produced parkinsonism, while lesioning a nearby ventral hotspot-induced dystonia. Presently, we injected fluorescent-tagged multi-synaptic tracers into these pallidal hotspots (n = 36 Long Evans rats) and permitted 4 days for the viruses to travel along restricted connecting pathways and reach the motor cortex before sacrificing the animals. Viral injections in the Parkinson's hotspot fluorescent labeled a circumscribed region in the secondary motor cortex, while injections in the dystonia hotspot labeled within the primary motor cortex. Custom probability mapping and N200 staining affirmed the segregation of the cortical territories for Parkinsonism and dystonia to the secondary and primary motor cortices. Intracortical microstimulation localized territories specifically to their respective rostral and caudal microexcitable zones. Parkinsonian features are thus explained by pathological signaling within a secondary motor subcircuit normally responsible for initiation and scaling of movement, while dystonia is explained by abnormal (and excessive) basal ganglia signaling directed at primary motor corticospinal transmission.


Basal Ganglia , Dystonia , Motor Cortex , Neural Pathways , Parkinsonian Disorders , Rats, Long-Evans , Animals , Motor Cortex/physiopathology , Motor Cortex/pathology , Parkinsonian Disorders/physiopathology , Parkinsonian Disorders/pathology , Rats , Neural Pathways/physiopathology , Dystonia/physiopathology , Dystonia/pathology , Dystonia/etiology , Basal Ganglia/pathology , Male , Globus Pallidus/pathology , Disease Models, Animal
7.
J Neurol Sci ; 459: 122983, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38574438

Acute midbrain injury may cause both hyperkinetic movement disorders and parkinsonism. The temporal interval between the insult and the emergence of hyperkinetic disorders can last years. A delayed appearance of parkinsonism, on the other hand, was rarely described. We present three cases of male patients (50-, 58- and 28-year-old) who developed levodopa-responsive parkinsonism 20, 8 and two years, respectively, after acute brain insult involving the midbrain. Insults included subcortical intracerebral hemorrhage dissecting into the midbrain, embolic basilar occlusion and trauma. A fluorodopa scan, performed in two cases, revealed reduced striatal uptake. All individuals improved on low doses of levodopa and developed motor fluctuations shortly after levodopa was introduced. We conclude that delayed, levodopa-responsive parkinsonism following midbrain injury should be recognized in the relevant clinical setup. Possible mechanisms include age-related loss of dopaminergic neurons superimposed on acute injury and secondary neurodegeneration.


Levodopa , Parkinsonian Disorders , Humans , Male , Levodopa/adverse effects , Parkinsonian Disorders/complications , Parkinsonian Disorders/diagnostic imaging , Parkinsonian Disorders/drug therapy , Brain , Mesencephalon/diagnostic imaging , Corpus Striatum
8.
Geriatr Psychol Neuropsychiatr Vieil ; 22(1): 93-102, 2024 Mar 01.
Article Fr | MEDLINE | ID: mdl-38573149

Cortico-basal degeneration is a relatively uncommon cause of degenerative parkinsonism in the elderly. From a clinical point of view, it manifests as a cortico-basal syndrome (CBS), featuring a highly asymmetrical akinetic-rigid syndrome, dystonia, myoclonus and cognitive-behavioral impairment with predominant apraxia. Other clinical phenotypes are possible, including variants with mainly language or behavioral impairment, or with axial, symmetrical parkinsonism resembling progressive supranuclear palsy (PSP). Current diagnostic criteria take into account the heterogeneity of clinical presentations. However, a diagnosis of certainty can only be reached by a pathological study, with the evidence of TAU-positive intraneuronal inclusions. Indeed SCB may be underpinned by other lesional substrates, ranging from frontotemporal degeneration to Alzheimer's disease. Symptom management must be early, multidisciplinary and adapted to the progression of the disorder. The identification of the pathological substrate is an essential prerequisite for pathophysiological therapeutic trials.


Alzheimer Disease , Corticobasal Degeneration , Parkinsonian Disorders , Aged , Humans , Syndrome , Alzheimer Disease/diagnosis , Atrophy , Parkinsonian Disorders/diagnosis
9.
J Integr Neurosci ; 23(4): 84, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38682230

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established treatment for the motor symptoms of Parkinson's disease (PD). While PD is primarily characterized by motor symptoms such as tremor, rigidity, and bradykinesia, it also involves a range of non-motor symptoms, and anxiety is one of the most common. The relationship between PD and anxiety is complex and can be a result of both pathological neural changes and the psychological and emotional impacts of living with a chronic progressive condition. Managing anxiety in PD is critical for improving the patients' quality of life. However, patients undergoing STN DBS can occasionally experience increased anxiety. METHODS: This study investigates changes in risk-avoidant behavior following STN DBS in a pre-motor animal model of PD under chronic and acute unilateral high frequency stimulation. RESULTS: No significant changes in risk-avoidant behaviors were observed in rats who underwent STN DBS compared with sham stimulation controls. Chronic stimulation prevented sensitization in the elevated zero maze. CONCLUSIONS: These results suggest that unilateral stimulation of the STN may have minimal effects on risk-avoidant behaviors in PD. However, additional research is required to fully understand the mechanisms responsible for changes in anxiety during STN DBS for PD.


Deep Brain Stimulation , Disease Models, Animal , Oxidopamine , Subthalamic Nucleus , Animals , Oxidopamine/pharmacology , Male , Behavior, Animal/physiology , Parkinsonian Disorders/therapy , Parkinsonian Disorders/physiopathology , Anxiety/etiology , Anxiety/physiopathology , Rats , Rats, Sprague-Dawley , Avoidance Learning/physiology , Parkinson Disease/therapy , Parkinson Disease/physiopathology
12.
Elife ; 122024 Apr 08.
Article En | MEDLINE | ID: mdl-38587883

Midbrain dopamine (mDA) neurons comprise diverse cells with unique innervation targets and functions. This is illustrated by the selective sensitivity of mDA neurons of the substantia nigra compacta (SNc) in patients with Parkinson's disease, while those in the ventral tegmental area (VTA) are relatively spared. Here, we used single nuclei RNA sequencing (snRNA-seq) of approximately 70,000 mouse midbrain cells to build a high-resolution atlas of mouse mDA neuron diversity at the molecular level. The results showed that differences between mDA neuron groups could best be understood as a continuum without sharp differences between subtypes. Thus, we assigned mDA neurons to several 'territories' and 'neighborhoods' within a shifting gene expression landscape where boundaries are gradual rather than discrete. Based on the enriched gene expression patterns of these territories and neighborhoods, we were able to localize them in the adult mouse midbrain. Moreover, because the underlying mechanisms for the variable sensitivities of diverse mDA neurons to pathological insults are not well understood, we analyzed surviving neurons after partial 6-hydroxydopamine (6-OHDA) lesions to unravel gene expression patterns that correlate with mDA neuron vulnerability and resilience. Together, this atlas provides a basis for further studies on the neurophysiological role of mDA neurons in health and disease.


Ascomycota , Parkinsonian Disorders , Adult , Humans , Animals , Mice , Dopaminergic Neurons , Gene Expression Profiling , Parkinsonian Disorders/genetics , Mesencephalon , Oxidopamine
13.
Article En | MEDLINE | ID: mdl-38656860

In neurodegenerative disorders, neuronal firing patterns and oscillatory activity are remarkably altered in specific brain regions, which can serve as valuable biomarkers for the identification of deep brain regions. The subthalamic nucleus (STN) has been the primary target for DBS in patients with Parkinson's disease (PD). In this study, changes in the spike firing patterns and spectral power of local field potentials (LFPs) in the pre-STN (zona incerta, ZI) and post-STN (cerebral peduncle, cp) regions were investigated in PD rats, providing crucial evidence for the functional localization of the STN. Sixteen-channel microelectrode arrays (MEAs) with sites distributed at different depths and widths were utilized to record neuronal activities. The spikes in the STN exhibited higher firing rates than those in the ZI and cp. Furthermore, the LFP power in the delta band in the STN was the greatest, followed by that in the ZI, and was greater than that in the cp. Additionally, increased LFP power was observed in the beta bands in the STN. To identify the best performing classification model, we applied various convolutional neural networks (CNNs) based on transfer learning to analyze the recorded raw data, which were processed using the Gram matrix of the spikes and the fast Fourier transform of the LFPs. The best transfer learning model achieved an accuracy of 95.16%. After fusing the spike and LFP classification results, the time precision for processing the raw data reached 500 ms. The pretrained model, utilizing raw data, demonstrated the feasibility of employing transfer learning for training models on neural activity. This approach highlights the potential for functional localization within deep brain regions.


Deep Brain Stimulation , Microelectrodes , Rats, Sprague-Dawley , Subthalamic Nucleus , Subthalamic Nucleus/physiopathology , Animals , Rats , Male , Disease Models, Animal , Parkinson Disease/physiopathology , Parkinson Disease/rehabilitation , Action Potentials/physiology , Algorithms , Computer Systems , Parkinsonian Disorders/physiopathology , Parkinsonian Disorders/rehabilitation , Machine Learning
14.
Behav Pharmacol ; 35(4): 201-210, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38660812

microRNAs (miRNAs) play a significant role in the pathophysiology of Parkinson's disease. In this study, we evaluated the neuroprotective effect of thymoquinone on the expression profiles of miRNA and cognitive functions in the 6-hydroxydopamine (6-OHDA)-induced Parkinson's model. Male adult Wistar albino rats (200-230 g, n  = 36) were randomly assigned to six groups: Sham, thymoquinone (10 mg/kg, p.o.), 6-OHDA, 6-OHDA + thymoquinone (10 mg/kg), 6-OHDA + thymoquinone (20 mg/kg), and 6-OHDA + thymoquinone (50 mg/kg). Behavioral changes were detected using the open field and the elevated plus maze tests. The mature 728 miRNA expressions were evaluated by miRNA microarray (GeneChip miRNA 4.0). Ten miRNAs were selected (rno-miR-212-5p, rno-miR-146b-5p, rno-miR-150-5p, rno-miR-29b-2-5p, rno-miR-126a-3p, rno-miR-187-3p, rno-miR-34a-5p, rno-miR-181d-5p, rno-miR-204-3p, and rno-miR-30c-2-3p) and confirmed by real-time PCR. Striatum samples were stained with hematoxylin-eosin to determine the effect of dopaminergic lesions. One-way ANOVA test and independent sample t -test were used for statistical analyses. rno-miR-204-3p was upregulated at 6-OHDA and downregulated at the 50 mg/kg dose of thymoquinone. In conclusion, thymoquinone at a dose of 50 mg/kg ameliorates symptoms of Parkinson's disease in a 6-OHDA rat model by downregulation of miR-204-3p. Also, the results showed that thymoquinone can improve locomotor activity and willing exploration and decreased anxiety. Therefore, thymoquinone can be used as a therapeutic agent.


Benzoquinones , Disease Models, Animal , Down-Regulation , MicroRNAs , Oxidopamine , Rats, Wistar , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Oxidopamine/pharmacology , Male , Benzoquinones/pharmacology , Down-Regulation/drug effects , Rats , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/metabolism , Maze Learning/drug effects , Corpus Striatum/metabolism , Corpus Striatum/drug effects
16.
Proc Natl Acad Sci U S A ; 121(17): e2318943121, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38635628

Synaptojanin-1 (SJ1) is a major neuronal-enriched PI(4, 5)P2 4- and 5-phosphatase implicated in the shedding of endocytic factors during endocytosis. A mutation (R258Q) that impairs selectively its 4-phosphatase activity causes Parkinsonism in humans and neurological defects in mice (SJ1RQKI mice). Studies of these mice showed, besides an abnormal assembly state of endocytic factors at synapses, the presence of dystrophic nerve terminals selectively in a subset of nigro-striatal dopamine (DA)-ergic axons, suggesting a special lability of DA neurons to the impairment of SJ1 function. Here we have further investigated the impact of SJ1 on DA neurons using iPSC-derived SJ1 KO and SJ1RQKI DA neurons and their isogenic controls. In addition to the expected enhanced clustering of endocytic factors in nerve terminals, we observed in both SJ1 mutant neuronal lines increased cilia length. Further analysis of cilia of SJ1RQDA neurons revealed abnormal accumulation of the Ca2+ channel Cav1.3 and of ubiquitin chains, suggesting a defect in the clearing of ubiquitinated proteins at the ciliary base, where a focal concentration of SJ1 was observed. We suggest that SJ1 may contribute to the control of ciliary protein dynamics in DA neurons, with implications on cilia-mediated signaling.


Induced Pluripotent Stem Cells , Nerve Tissue Proteins , Parkinson Disease , Parkinsonian Disorders , Humans , Mice , Animals , Parkinson Disease/metabolism , Dopaminergic Neurons/metabolism , Induced Pluripotent Stem Cells/metabolism , Parkinsonian Disorders/genetics , Parkinsonian Disorders/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Mutation
17.
Clin Nucl Med ; 49(6): e284-e285, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38498732

ABSTRACT: A 67-year-old woman complained of rest and postural tremors in her left upper extremity, associated with bradykinesia and gait disorder since 2 years ago, with no significant response to antiparkinsonism drugs. Dopamine transporter SPECT/CT revealed a remarkable area of 99m Tc-TRODAT-1 uptake in a huge tumoral lesion in the right frontotemporal region, compressing and dislocating the right striatum with evidence of significant midline shift. The patient underwent surgical resection with a diagnosis of meningioma on preoperative MRI and postoperative histology report, experiencing a marked recovery in symptoms after 1 month.


Meningioma , Organotechnetium Compounds , Parkinsonian Disorders , Single Photon Emission Computed Tomography Computed Tomography , Tropanes , Humans , Female , Aged , Meningioma/diagnostic imaging , Meningioma/complications , Parkinsonian Disorders/diagnostic imaging , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/complications , Tomography, Emission-Computed, Single-Photon
18.
Mov Disord ; 39(3): 571-584, 2024 Mar.
Article En | MEDLINE | ID: mdl-38425158

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disease that leads to progressive disability. Cost studies have mainly explored the early stages of the disease, whereas late-stage patients are underrepresented. OBJECTIVE: The aim is to evaluate the resource utilization and costs of PD management in people with late-stage disease. METHODS: The Care of Late-Stage Parkinsonism (CLaSP) study collected economic data from patients with late-stage PD and their caregivers in five European countries (France, Germany, the Netherlands, UK, Sweden) in a range of different settings. Patients were eligible to be included if they were in Hoehn and Yahr stage >3 in the on state or Schwab and England stage at 50% or less. In total, 592 patients met the inclusion criteria and provided information on their resource utilization. Costs were calculated from a societal perspective for a 3-month period. A least absolute shrinkage and selection operator approach was utilized to identify the most influential independent variables for explaining and predicting costs. RESULTS: During the 3-month period, the costs were €20,573 (France), €19,959 (Germany), €18,319 (the Netherlands), €25,649 (Sweden), and €12,156 (UK). The main contributors across sites were formal care, hospitalization, and informal care. Gender, age, duration of the disease, Unified Parkinson's Disease Rating Scale 2, the EQ-5D-3L, and the Schwab and England Scale were identified as predictors of costs. CONCLUSION: Costs in this cohort of individuals with late-stage PD were substantially higher compared to previously published data on individuals living in earlier stages of the disease. Resource utilization in the individual sites differed in part considerably among these three parameters mentioned. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Neurodegenerative Diseases , Parkinson Disease , Parkinsonian Disorders , Humans , Parkinsonian Disorders/epidemiology , Parkinsonian Disorders/therapy , Europe/epidemiology , Parkinson Disease/epidemiology , Parkinson Disease/therapy , Germany
19.
Inquiry ; 61: 469580241237113, 2024.
Article En | MEDLINE | ID: mdl-38488199

This study investigates the association between socioeconomic position (SEP) - in terms of income and education - and mortality from neurodegenerative diseases, that is, dementia, parkinsonism, and motor neuron diseases (MNDs). We calculated age-standardized mortality rates and mortality rate ratios using log linear Poisson regression for different SEP groups, stratified by gender, age-group, and care home residency, utilizing the 2011 Belgian census linked to register data on cause-specific mortality for 2011 to 2016. Mortality was significantly higher in the lowest educational- and income groups. The largest disparities were found in dementia mortality. Income had a strong negative effect on parkinsonism mortality, education a positive effect. We found no significant association between SEP and MND. Our study provides evidence supporting the presence of socioeconomic disparities in mortality due to neurodegeneration. We found a strong negative association between SEP and NDD mortality, which varies between NDD, gender and care home residency.


Dementia , Neurodegenerative Diseases , Parkinsonian Disorders , Male , Humans , Female , Socioeconomic Factors , Socioeconomic Disparities in Health , Belgium/epidemiology
20.
EBioMedicine ; 102: 105065, 2024 Apr.
Article En | MEDLINE | ID: mdl-38502973

BACKGROUND: Idiopathic rapid eye movement (REM) sleep behaviour disorder (IRBD) represents the prodromal stage of Lewy body disorders (Parkinson's disease (PD) and dementia with Lewy bodies (DLB)) which are linked to variations in circulating cell-free mitochondrial DNA (cf-mtDNA). Here, we assessed whether altered cf-mtDNA release and integrity are already present in IRBD. METHODS: We used multiplex digital PCR (dPCR) to quantify cf-mtDNA copies and deletion ratio in cerebrospinal fluid (CSF) and serum in a cohort of 71 participants, including 1) 17 patients with IRBD who remained disease-free (non-converters), 2) 34 patients initially diagnosed with IRBD who later developed either PD or DLB (converters), and 3) 20 age-matched controls without IRBD or Parkinsonism. In addition, we investigated whether CD9-positive extracellular vesicles (CD9-EVs) from CSF and serum samples contained cf-mtDNA. FINDINGS: Patients with IRBD, both converters and non-converters, exhibited more cf-mtDNA with deletions in the CSF than controls. This finding was confirmed in CD9-EVs. The high levels of deleted cf-mtDNA in CSF corresponded to a significant decrease in cf-mtDNA copies in CD9-EVs in both IRBD non-converters and converters. Conversely, a significant increase in cf-mtDNA copies was found in serum and CD9-EVs from the serum of patients with IRBD who later converted to a Lewy body disorder. INTERPRETATION: Alterations in cf-mtDNA copy number and deletion ratio known to occur in Lewy body disorders are already present in IRBD and are not a consequence of Lewy body disease conversion. This suggests that mtDNA dysfunction is a primary molecular mechanism of the pathophysiological cascade that precedes the full clinical motor and cognitive manifestation of Lewy body disorders. FUNDING: Funded by Michael J. Fox Foundation research grant MJFF-001111. Funded by MICIU/AEI/10.13039/501100011033 "ERDF A way of making Europe", grants PID2020-115091RB-I00 (RT) and PID2022-143279OB-I00 (ACo). Funded by Instituto de Salud Carlos III and European Union NextGenerationEU/PRTR, grant PMP22/00100 (RT and ACo). Funded by AGAUR/Generalitat de Catalunya, grant SGR00490 (RT and ACo). MP has an FPI fellowship, PRE2018-083297, funded by MICIU/AEI/10.13039/501100011033 "ESF Investing in your future".


Parkinson Disease , Parkinsonian Disorders , REM Sleep Behavior Disorder , Humans , REM Sleep Behavior Disorder/diagnosis , REM Sleep Behavior Disorder/genetics , Parkinson Disease/genetics , Forecasting , DNA, Mitochondrial/genetics
...